• MECHANICAL DESIGN

    ANSYS

Ansys develops and markets finite element analysis software used to simulate engineering problems.The software creates simulated computer models of structures, electronics, or machine components to simulate strength, toughness, elasticity, temperature distribution, electromagnetism, fluid flow, and other attributes. Ansys is used to determine how a product will function with different specifications, without building test products or conducting crash tests.

For example, Ansys software may simulate how a bridge will hold up after years of traffic, how to best process salmon in a cannery to reduce waste, or how to design a slide that uses less material without sacrificing safety.

Most Ansys simulations are performed using the Ansys Workbench software, which is one of the company's main products. Typically Ansys users break down larger structures into small components that are each modeled and tested individually. A user may start by defining the dimensions of an object, and then adding weight, pressure, temperature and other physical properties. Finally, the Ansys software simulates and analyzes movement, fatigue, fractures, fluid flow, temperature distribution, electromagnetic efficiency and other effects over time

Training Mode
Regular 3 Weeks (2 Hrs / day)
Fast-Track 10 Days (6 Hrs / day)
Weekends (Sat / Sun) 1.5 Months (5 Hrs / day)
Only Sundays 2.5 Months (8 Hrs / day)
Online 1 Week (4 Hrs / day)
ANSYS
Introduction to FEA and Ansys
  • Introduction to FEA
  • General Working of FEA
  • Nodes, Elements, and Element Shapes
  • General Procedure of Conducting Finite Element Analysis
  • FEA through ANSYS
  • Effective Utilization of FEA
  • FEA Software
  • Advantages and Limitations of FEA Software
  • Key Assumptions in FEA
  • Assumptions Related to Geometry
  • Assumptions Related to Material Properties
  • Assumptions Related to Boundary Conditions
  • Assumptions Related to Fasteners
  • Types of Analysis
  • Structural Analysis
  • Thermal Analysis
  • Fluid Flow Analysis
  • Electromagnetic Field Analysis

  • Coupled Field Analysis
  • Important Terms and Definitions
  • Strength (Resistance to Deformation)
  • Load
  • Stress
  • Strain
  • Elastic Limit
  • Ultimate Strength
  • Factor of Safety
  • Lateral Strain and Poisson’s Ratio
  • Bulk Modulus
  • Creep
  • Engineering Materials
  • Introduction to ANSYS
  • System Requirements
  • Getting Started with ANSYS
  • Interactive Mode
  • Batch Mode
  • Starting a New File Using the ANSYS Product Launcher window
  • ANSYS Metaphysics Utility Menu Window (ANSYS Session)

  • ANSYS Output Window
  • Utility Menu
  • Main Menu
  • Graphics Area
  • Standard Toolbar
  • ANSYS Command Prompt
  • Command Window Icon
  • Raise Hidden Icon
  • Reset Picking
  • Contact Manager
  • ANSYS Toolbar
  • Model Control Toolbar
  • User Prompt Information
  • Current Settings
  • Setting the Analysis Preferences
  • Units in ANSYS
  • Other Important Terms Related to ANSYS
  • Graphics Display
  • Panning, Zooming, and Rotating the Model
  • Dividing the Graphics Area
  • The Pan-Zoom-Rotate Dialog Box
  • Graphics Picking

  • Using Mouse Buttons for Picking
  • ANSYS Database and Files
  • Saving the File
  • Resuming the File
  • Clearing the Database
  • Some Basic Steps in General Analysis Procedure
  • Points to Remember while Performing an Analysis
  • Exiting ANSYS
  • Self-Evaluation Test

Basic Solid Modeling
  • Solid Modeling in ANSYS
  • Solid Modeling and Direct Generation
  • Solid Modeling Methods
  • Bottom-up Construction
  • Top-down Construction
  • Considerations before Creating a Model for Analysis
  • Details Required
  • Symmetry
  • Creating Geometric Entities
  • Creating Lines
  • Creating Arcs
  • Creating B-Spines
  • Creating Fillets between Intersecting Lines
  • Creating Areas
  • Creating and Modifying Work planes
  • Display Working Plane

  • Show WP Status
  • WP Settings
  • Offset WP by Increments
  • Coordinate Systems in ANSYS
  • Global Coordinate System
  • Local Coordinate System
  • Active Coordinate System
  • Display Coordinate System
  • Nodal Coordinate System
  • Element Coordinate System
  • Results Coordinate System
  • Creating New Coordinate Systems
  • Deleting Existing Coordinate
Advanced Solid Modeling
  • Advanced Solid Modeling
  • Creating Volumes
  • Extruding Entities
  • Extending the Line
  • Creating Complex Solid Models by Performing Boolean Operations
  • Modifying the Solid Model
  • Scale
  • Move
  • Copy
  • Reflect
  • Deleting Solid Model Entities
  • Importing Solid Models
  • Importing the IGES File
  • Importing Models from Pro/ENGINEER
  • Importing the Model from Unigraphics
Finite Element Modeling (FEM) – I
  • An Overview of the Finite Element Modeling
  • Element Attributes
  • Element Types
  • Reasons Why ANSYS has a Large Element Library
  • Real Constants
  • Material Properties
  • Multiple Attributes
  • Assigning Multiple Attributes before Meshing
  • Assigning Default Attributes before Meshing
  • Modifying Attributes after Meshing
  • Verifying Assigned Attributes
  • Element Attributes Table

Finite Element Modeling (FEM) – II
  • Finite Element Modeling (FEM) - II
  • Mesh Generation
  • Mesh Density
  • Meshing the Solid Model
  • Setting Element Attributes
  • Defining the Mesh
  • Defining the Entity to be Meshed
  • Defining the Meshing Type
  • Meshing the Model
  • Refining the Mesh Locally
  • Extruding the Mesh
  • Transitional Pyramid Elements
  • Requirements for Creating Pyramid Elements
  • Creating Transitional Pyramid Elements (Hex-to-Tet Meshing)
  • Converting Degenerate Tetrahedral (20 nodes) Elements into
  • Non-degenerate (10 nodes) Tetrahedral Elements
  • Plotting Pyramid Elements
  • Meshing the Beam with Orientation Nodes
  • Creating the Beam Mesh with Orientation Nodes

  • Creating the Beam Mesh with Two Orientation Nodes
  • Improving the Tetrahedral Element Meshes
  • Improving Tetrahedral Meshed Volumes by Using Volumes
  • Improving Tetrahedral Meshed Volumes by Using Detached Elements
  • Some Additional Tips while Meshing the Model
  • Applying Loads
  • The Nodal Coordinate System
  • Loads in Different Disciplines
  • Types of Loads in ANSYS
  • Load Steps, Sub steps, and Time
  • Applying Loads
  • Deleting Loads
  • Deleting DOF Constraints
  • Deleting all Loads and Load Step Options
  • Deleting all Loads Applied on Solid Model
  • Deleting all Loads Applied on Finite Element Model
Solution and Postprocessor
  • Solution
  • Defining the New Analysis Type
  • Restarting the Analysis
  • Setting Solution Controls
  • Setting Analysis Options
  • Solving the Analysis Problem
  • Post processing the Result
  • POST1 (General Postprocessor)
  • POST26 (Time-history Postprocessor)
  • Result Coordinate System (RSYS)
  • Displaying the Deformed Shape of the Model
  • Displaying the Minimum and Maximum Stresses
  • Listing Reaction Forces
  • Listing Stress Values at each Node
  • Query Picking
  • Path Operations
  • Load Case Combinations
Static Structural Analysis
  • Effect of self-weight on a cantilever beam
  • Analysis of a bicycle handle
  • Analysis of a stud (pin)
  • Analysis of a master

Advanced Structural Analysis (Dynamic and Nonlinear)
  • Advanced Structural Analysis
  • Dynamic Analysis
  • Performing the Modal Analysis
  • Specifying the Analysis Type, Analysis Options, and Applying Loads
  • Obtaining the Solution
  • Reviewing Results
  • Performing the Harmonic Analysis
  • Specifying the Analysis Type, Analysis Options, and Applying Loads
  • Obtaining the Solution
  • Reviewing Results
  • Performing the Transient Analysis
  • Specifying the Analysis Type, Analysis Options, and Applying Loads

  • Obtaining the Solution
  • Reviewing Results
  • Nonlinear Analysis
  • Geometric Nonlinearity
  • Material Nonlinearity
  • Boundary Nonlinearity (Changing Status)
  • Performing the Nonlinear Analysis
  • Specifying the Analysis Type, Setting Solution Controls, and
  • Applying Loads
  • Obtaining the Solution
Thermal Analysis
  • Thermal Analysis
  • Important Terms Used in Thermal Analysis
  • Heat Transfer Modes
  • Thermal Gradient
  • Thermal Flux
  • Bulk Temperature
  • Film Coefficient
  • Emissivity
  • Stefan–Boltzmann Constant
  • Thermal Conductivity
  • Specific Heat
  • Types of Thermal Analysis
  • Steady-State Thermal Analysis
  • Transient Thermal Analysis

  • Performing Steady-State Thermal Analysis
  • Setting the Analysis Preference
  • Creating or Importing a Solid Model
  • Defining Element Attributes
  • Meshing the Solid Model
  • Specifying the Analysis Type, Analysis Options, and Applying Loads
  • Solving the Analysis Problem
  • Post processing Results
  • Performing Transient Thermal Analysis
  • Specifying the Analysis Type and Setting Solution Controls

Advanced Structural Analysis
  • Steel tubes and springs structure
  • Modal analysis of an airplane wing
  • Nonlinear analysis (material nonlinearity)
Generating The Report of Analysis
  • Starting the ANSYS Report Generator
  • Capturing Images for the Report
  • Capturing Animations for the Report
  • Capturing Data Tables for the Report
  • Capturing Lists for the Report
  • Compiling the Report

  • Changing the Default Settings of the ANSYS Report Generator
  • Error Estimation in Solution
  • Percentage Error in Energy Norm (SEPC)
  • Element Energy Error (SERR)
  • Element Stress Deviations (SDSG)
  • Maximum and Minimum Stress Boun
Combo Offers

Duration: 180 Hours

Old Price: INR 29000.00 /-

New Price: INR 24500.00/-

Duration: 180 hrs

Old Price: INR 28500.00 /-

New Price: INR 23500.00/-

Duration: 160 hrs

Old Price: INR 29500.00 /-

New Price: INR 23500.00/-

Duration: 180 HRS

Old Price: INR 29500.00 /-

New Price: INR 22500.00/-

Duration: 190 HOURS

Old Price: INR 35000.00 /-

New Price: INR 23000.00/-

Duration: 190 HOURS

Old Price: INR 32600.00 /-

New Price: INR 23500.00/-

How to Apply:

If you require any further information regarding our advanced AutoCAD Course please contact our AutoCAD training admission team.

fortcomputeredu@gmail.com

+91 (0)9566 860 890.